Methods in Transmission Electron Microscopy and their application

Day 1

Standard EM-grids:

,mesh' = number of bars per inch (2.54 cm).

Different types of EM-grids. For our applications, grids with enhanced bar-free areas are very important (Slot-Grids).

The plastic support film consists of e.g. Collodium, Formvar der Pioloform.

Floating of the support film on water after scratching it at the edges.

Sampling

- Incubation in bacterial growth medium
- Centrifugation at 1.000 g or 14.000 g for 3 min?
- Resuspension in growth medium

Fixation-temperature

In contrast to animal samples, this is of minor importance for plant material.

Room temperature: much faster for standard questions; good results in 99% of experiments.

0-4° : Immuno localization, histochemistry (z.B. detection of catalase), but: all incubation times have to be 4 times longer!

Cacodylate buffer

Sodium salt of dimethyl arsenic (cacodylic) acid

 $(CH_3)_2As(=0)ONa$

MG: 214.05 g/mol

Toxic!!

Blocks glycolysis and thus fermentation of cells \rightarrow "Agent Blue"

"storable"

Concentration: 50-75 mM; osmolarity can be adjusted with e.g. NaCl.

Dissociates 1:2 also at high concentration(50 mMol = 100 mOsmol)

pH: 7.0 (or adjusted to the pH of medium respectively)

Fixation time

Diffusion: square function (double distance = 4x time!).

Diffusionsgeschwindigkeit von Fluorescein in Wasser

durchwanderte Strecke	Zeit
1 nm	130 psec
10 nm	13 nsec
100 nm	1,3 µsec
1 μm	130 µsec
10 µm	13 msec
100 µm	1,3 sec
1 mm	2 min
1 cm	3,5 Std
10 cm	15 Tage
50 cm	1 Jahr
1 m	4,2 Jahre

Diffusion is temperature dependent (Q_{10} = ca. 2).

Glutardialdehyde takes 20 min for complete fixation of a molecule with a diameter of 100 nm (at RT).

Diffusion in a tissue sample with 1 mm edge length: at least 30 min – i.e. complete fixation takes at least 1 h.

Washing times

Elution process: e^{-x} function (exponential decrease!) Rule of thumb Washing time = 2 x (fixation time) С

Т

Classical/chemical fixation

- 1. Fixation buffer: cacodylate buffer
- 2. Fixative: 2.5 % glutaraldehyde (in some cases + 1-4% formaldehyde)
- 3. Post-fixation: osmium tetroxide (OsO₄)
- 4. (en bloc staining with uranyl acetate)
- 5. Dehydration in a graded acetone series
- 6. Resin embedding
- 7. Post/positive staining

Glutar(di)aldehyde

Concentration: 2.5%

pH: 7.0

Chemical fixation by aldehydes

- Crosslinking of proteins by aldehydes: fixation
- Length of aldehyde molecules is important
- Do not prevent lipid loss from bilayer
- Exception: phospholipids containing amino groups: phosphatidylserine, phosphatidylethanolamine

```
Formaldehyd:

R_1-NH_2 + HCHO \longrightarrow R_1-NH-CH_2OH (Additionsprodukt)

R_1-NH-CH_2OH + H_2N-R_2 \rightarrow R_1-NH-CH_2-HN-R_2+H_2O (Kondensationsprodukt)

Glutaraldehyd:

3 \times OHC-CH_2-CH_2-CH_2-CHO \longrightarrow Polymerisationsprodukt:

OHC-CH_2-CH_2-CH_2-CH=C-CH_2-C=CH-CH_2-CH_2-CH_2-CHO

I

CHO

HC

HC

CHO

HC

HC

CHO

HC

HC

CH

HC

HC

CH

HC

CH

HC

HC

CH

HC

HC
```

Abb. 18: Reaktionsschemata der Quervernetzung von Proteinen durch Formaldehyd (Fraenkel-Conrat und Olcott, 1948), Glutaraldehyd (Richards und Knowles, 1968) und Acrolein [(a) Jones, 1972; (b) Hall und Stern, 1955]. R-NH₂ bezieht sich auf Aminogruppen im Protein.

Osmium tetroxide

Yellowish crystals in pharmaceutical phials under $\ensuremath{N_2}$ atmosphere

Toxic!!

Diffusion significantly slower than glutaraldehyde

Cross reaction with glutaraldehyde (black precipitates)

Concentration: 1 – 2%

pH: 7.0

buffer: cacodylate phosphate Tris Pipes

Fixation/staining with OsO₄

- Crosslinking and preservation of lipids/unsaturated fatty acids (oleins and oleic acids)
- Point of attack: C=C-double bond
- Proteins: reaction with double bonds of tryptophan
- Additional side effect: contrast enhancement
- Disadvantage: low rate of penetration -> fine structure may change before completion of fixation
- Osmates and osmium dioxide most likely migrate to cations of phospholipid head groups
- Trilaminarar appearance of membranes treated with OsO₄: preferential deposition of OsO₂ at the two hydrophilic faces, some residual osmium at original olefinic site

Chemical fixation: major problems

- Lipid extraction in dehydration process and resin infiltration/embedding
- Glutaraldehyde (GA) may cause artifacts like blebs or mesosomes
- GA is unable to prevent movement of phospholipids and intramembrane particles
- GA is not very effective at temperatures below -20° C, Acrolein remains active even at -80° C
- Formaldehyde (FA) fixation alone leads to lipid-depleted membranes that consist largely of protein. The same is true for Acrolein, although to a smaller extent
- Difficult handling of Acrolein: polymerization on exposure to air, light and several chemicals
- Fixation is often too slow (e.g. slow penetration of OsO₄)
- Loss of lipids after OsO₄ fixation often higher than expected (often without significant structural alterations)

Cacodylate buffer (1000 ml); pH 7.0 with 3% NaCl

 Cacodylate: Sodium salt of dimethyl arsenic (cacodylic) acid (CH₃)₂As(=0)ONa MW: 214.05 g/mol

• **MgCl**₂ **x 6 H**₂**O:** MW: 203,30 g/mol

How much do we need of each substance to make a 50 mM Cacodylate buffer with 2 mM MgCl2 and 3% NaCl?

Sample preparation

Embedding material

epoxy resin methacrylate polyester

The embedding material depends on the research purpose:

• good/excellent ultrastructural preservation (bad for immunological detection):

Embedding in epon (812) oder Spurr's resin

• good preservation of epitopes/antigens (limited ultrastructural preservation):

Embedding in Lowicryl or LR-White (methacrylates)

Embedding in epon resin

(Dehydration: dehydration with graded ethanol or acetone series)

Embedding in Epon812:

- 1. Epon812: Epoxy monomer, glycidether
- 2. MNA: methyladenicanhydride hardener
- 3. DDSA: Dodecylsuccinicanhydride hardener
- 4. DMP: Dimethylaminomethylphenol catalyst, accelerator
- Mixing ratio determines final mechanical hardness of plastic
- Polymerization of epoxy monomers over night (minimal time 12h) up to 72 h at 60° C

Silicone embedding molds

