Methods in Transmission Electron Microscopy and their application

Day 4/5

SEM: sample preparation

TEM: thin sectiong

Sample preparation

Phase diagram water

Phase diagram water CO₂

Critical-point-drying (CPT)

Sample preparation

© Plant Development

Sample mounting

Vacuum metal evaporation – sputter coating

Leitsilber – the classic

Composition: Silver colloid in eucalyptus oil

Pros: fast Very high conductivity

Cons:

Organic solvent Gets sucked into sample Moderate adhesion Bright background

Leit-C (organic or aqueous)

Composition:

Carbon black/grime in butyl acetate Carbon black/grime in aqueous suspension

Pros: Dark background Good conductivity texture ± adjustable

Cons:

Organic solvent Gets sucked into sample Moderate adhesion Aqueous solvent: Hydration

Leittabs

Composition: Double-sided adhesive foil containing carbon black/grime

Pros: Very fast Good adhesion Dark background

Cons: Crack formation Thermal drift Moderate conductivity

Tempfix

Composition: Thermoplastic polymer

Pros:

Best adhesion Very smooth background Dark background No crack formation Sinking- depth of sample "adjustable" Almost no thermical drift

Cons: Often time consuming Not conductive Application demands great skill

Vacuum metal evaporation

Properties High vacuum Hot particles "Light and shadow" Oblique evaporation

Parameters: distance: sample - metal Quality of vacuum Amount of metal

Vacuum metal evaporation

Properties High vacuum Hot particles "Light and shadow" Oblique evaporation

Parameters: distance: sample - metal Quality of vacuum Amount of metal

Oblique evaporation: "Light and shadow"

Oblique evaporation: "Light and shadow" (TEM)

Vacuum metal evaporation

Sputter coating

Properties Moderate vacuum Cold particles ± even layer

Parameters:

Distance: sample-target Quality of vacuum High tension Current flow (argon ions) Duration

Sputter coating

E. faecalis anti-AG/anti-Kaninchen-10 nm Gold + 2 nm Au/Pd

Formation of clusters

Gold: Gold/palladium (80/20): Platinum:

strong weak no

Comparison of Sputter coating materials (20 nm layer thickness each)

Cr

Chromium Atomic number: 24 Atomic mass: 53 Density: 7,2

Та

Tantalum Atomic number: 73 Atomic mass: 181 Density: 16,6

W

Tungsten Atomic number: 74 Atomic mass: 184 Density: 19,3

Au

Gold Atomic number: 79 Atomic mass: 197 Density: 19,3

Layer thickness – signal – resolution

Ultramicrotomes used for EM represent rotation microtomes.

What is sharpness?

What is sharpness?

What is sharpness?

Production of glass knives

By using the Knifemaker, small glass squares are made from long glass bars (scratching and breaking)

The glass squares are mounted into the Knifemaker. Afterwards they are scratched diagonally and finally broken.

This leads to triangular glass knives.

Breaking glass squares

Ideal scratch line

A good and a "bad" knife

Scratch line too strong

Scratch line too short

Ideal scratch line

2 knives: the good & the bad one

2 knives: the good & the bad one

Progression of break line: Scale for quality

Cutting edge of a glass knife: S: Corner, cannot be used for sectioning. Z: Sectioning zone. E: Depending on quality, this part can sometimes be used for sectioning.

Progression of break line: Scale for quality

Implements to assemble the through

Keep the angle in mind: -6°

Keep the angle in mind: -6°

Through is finished

Dental wax for sealing

Melting wax

Seal the backside

Sealing of the backside

Sealing the wings – glass knife is ready!

