Methods in Transmission Electron Microscopy and their application

Day 5

Composition of a microtome

Schematische Darstellung eines Ultramikrotoms /Reimer67/

- periodic up and down movement of specimen arm
- thermal or mechanid feed

The water level has to be adjusted correctly.

To perform sectioning the right way, the inclination (angle) is very important.

The section thickness can be determined by estimating the interference colour

Interference colour	Section thickness in nm
grey	< 60
silver	60 - 90
gold	90 - 150
purple	150 - 190
blue	190 - 240

Removal of the sections from the knife edge using an eyelash

Fishing of the sections with a grid (attachment from top or tilted grid from underneath

Manipulation of the sections on the water surface: eyelash, guinea pig hair (Meerschweinchenhaar) or whiskers glued to a toothpick using dental wax.

Ultramicrotomes used for EM represent rotation microtomes. The major building blocks of cells consist of C, O, H and N. This is resulting in poor contrast, therefore we have to perform a post staining with lead citrate and uranyl acetate (heavy metal salts): double staining.

Glutaraldehyde

Glutaraldehyde

Glutaraldehyde + lead citrate

Glutaraldehyde

Glutaraldehyde + lead citrate

Glutaraldehyde + uranyl acetate

Osmium is fixing and contrasting all membranes

Glutaraldehyde

Glutaraldehyde + osmium + UrAc

Glutaraldehyde + osmium + UrAc

Glutaraldehyde + osmium + Pb

Glutaraldehyde + osmium + UrAc

Glutaraldehyde + osmium + Pb

Glutaraldehyde + osmium + UrAc + Pb

Pyramid with narrow tip!

Investigating an ultrathin section in the TEM: Looking for a suitable position.

Pyramid with narrow tip!

Trimming a prism at a suitable position.

Pyramid with narrow tip!

50 – 100 sections on one grid!

Problems concerning sectioning

"Chatter" (vibration/judder)

Dirty knife edge

Folds

Folds or pits?

Starch – always very poor imaging!

Nick/notch of the knife

Nick/notch of the knife

Holes and knife marks/grooves

Holes

Holes

Compression lines

Compression lines

Bad fixation & notch/nick of the knife

Broken tissue after fixation

